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Abstract

This work investigates learning and generalisation capabilities of radial basis function
networks (RBFN) used to solve snow cover thickness estimation model as regression
and classification. The model is based on a minimal set of climatic and topographic data
collected from a limited number of stations located in the Italian Central Alps. Several
experiments have been conceived and conducted adopting different evaluation indexes
in both regression and classification tasks. The snow cover thickness estimation by
RBFN has been proved a valuable tool able to deal with several critical aspects arising
from the specific experimental context.

1 Introduction

The increasing amount and quality of available geospatial, environmental data, drive
the need for new models with analytical recognition and predictive capabilities. These
models are rooted in new techniques based on knowledge-based systems, neural net-
works, fuzzy logic and hybrids soft computing frameworks. These advances in geospa-
tial computational methods open up new possibilities for the accurate estimation of
complex environmental parameters (Belward et al., 2003).

In this work we focus our attention on snow cover thickness modelling which is an
important scientific topic studied for different purposes such as snow avalanche risks,
hydrological scope and permafrost distribution (Gong, 1996). Snow plays a significant
role as an environmental and societal variable and, at the same time, it is also an
important meteorological and climatological element.

The investigation of this problem can be considered a complex task for several rea-
sons. One of the main challenges is related to the fact that snow cover thickness is
strongly influenced by many climatic and topographic variables and for each of them it
is not well defined the contribution factor for the evaluation of the snow height. In addi-
tion to the theoretical issues difficulties arise, also during the experiments; for example
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the processes of gathering, intersecting and clipping the available data to obtain an
appropriate and coherent set of patterns dramatically reduced the numerosity of the
initial data set.

Several works demonstrated that neural networks (NNs) modelling a variety of non-
linear transfer functions, can successfully address the above critical aspects (Bishop,
1995). NNs are distribution free and do not require that data conform to a fixed model,
an aspect of great potential in the context of environmental studies which are based
on the fusion of multiple, heterogeneous data sets. The attractiveness of NNs also
comes from learning capabilities, robustness and ability to handle incomplete and im-
precise information (Jain et al., 1996). They can provide practically accurate solutions
for precisely or imprecisely formulated problems and for phenomena that are only un-
derstood through experimental data and field observations. Instead of assuming rela-
tionships between factors and output variables, the NN approach can inductively learn
from training data sets these explicit relationships without requiring prior knowledge. In
the last 20 yr we have seen a rapid growth in the use of NNs in geosciences and a va-
riety of techniques have been investigated for different studies. Seminal papers first
raising the use of neural computing for the analysis of geological and/or geophysical
data were created in the remote sensing community (Benediktsson et al., 1990; Gong,
1996). In these early works the potential of neural networks in handling spatial data
coming from multiple sources is investigated and compared with conventional statisti-
cal and linear methods. Results obtained were encouraging confirming the superiority
of neural models in dealing with data with any measurement scale and determining
how much influence a source should have in the integrated analysis. The proven prop-
erties of high parallelism, robustness, ability to handle imprecise and fuzzy information
outweigh the difficulties associated with the setting up of suitable internal parameters
and complexity in performing the training stage (Skidmore et al., 1997). NNs have in-
creasingly become practical tools for solving problems that more traditional systems
have found intractable in several geoscience contexts (Lees, 1996; Tagliaferri et al.,
2003) dealing with a variety of topics such as land cover mapping (Baraldi et al., 2001;
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Civco, 1993; Foody, 1995), landslides prediction (Binaghi et al., 2004; Lee et al., 2003;
Guzzetti et al., 1999), forecasting of atmospheric events (Gardner and Dorling, 1998).
NNs have been successfully applied to the analysis of climate variables enabling the
construction of empirical models for the estimation of their temporal and spatial distribu-
tions. An adaptive basis function network for analysing trends in rainfall was proposed
by (Philip and Joseph, 2003). Their study demonstrated experimentally that the peri-
odicity of rainfall patterns may be understood using a neural model so that long-term
predictions can be made. In (Antoni et al., 2001) spatio-temporal distributions of cli-
matic variables expressed at the level of monthly statistics, are described as empirical
functions of latitude, longitude, elevation and respective climatic time series obtained
from a limited number of weather stations. To deal properly with the complexity of these
non linear functional dependencies, a NN was used producing accurate results. Among
the many NN models available the most used in geoscience and remote sensing stud-
ies has been the multi-layer perceptron (MLP) coupled with the error back propagation
(BP) algorithm. MLP networks are based on nonlinear sigmoid functions which give
significant non-zero response in a wide region of the input space. Their approxima-
tions are smooth and continuous, more and more accurate for increasing numbers of
nodes in the hidden layers. However, benefits and limitations of MLP networks have
become more and more visible and results of comparative studies in diversified do-
mains are now available (Corsini et al., 2003; Jayawardena et al., 1997). MLP is highly
nonlinear in its parameters. The BP algorithm which uses the method of steepest de-
scent does not guarantee convergence to globally optimum set of parameters. In re-
cent years researches concerning different types of feedforward networks have been
developed. Among the various kinds of promising networks are the so-called radial
basis function networks (RBFNs). These neural feed forward models are three-layer
networks, whose output nodes form a linear combination of the basis functions (usu-
ally of the Gaussian type) computed by the hidden layer nodes. Each node provides
a significant non-zero response only when the input falls within a small localised region
of the input space (Moody and Darken, 1989). Several studies proved theoretically and
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experimentally that the RBFNs are capable of universal approximations and learning
without local minima, thereby guaranteeing convergence to globally optimum parame-
ters (Hush and Horne, 1993; Park and Sandberg, 1991). Moody and Darken (Moody
and Darken, 1989) demonstrated also that the RBF type networks learn faster than
MLP networks. In geoscience literature there is a growing interest in studies that inves-
tigate the use of RBFNSs to solve a variety of problems. Forecasting of daily streamflow
is, for example, the topic discussed in (Moradkhani et al., 2004) and addressed by
a RBFN integrating Self Organising principles. Del’Acqua and Gamba (2003) use ra-
dial basis function NNs (RBFN) both to approximate the rain field and to forecast the
parameters of this approximation in order to anticipate the movements and changes
in geometric characteristics of significant meteorological structures. The study reports
performances decisively better than the feed-forward network and the ordinary kriging
(OK).

In the present work we investigate the performance of RBFNs used to estimate snow
cover thickness in function of climate and topographic parameters. Solution is modelled
in terms of both function regression and classification tasks. The solutions investigated
in this paper are an extension of those adopted in a previous work (Guidali et al.,
2010) from which we inherit the neural model. Experiments have been extended re-
porting a deeper analysis of the results. A new task concerning snow cover mapping
has been inserted including the description of spatialisation procedures and evalua-
tion by comparison with snow mapping algorithm based on the normalized difference
snow index (NDSI) derived from Landsat imagery (Crane, 1984). In this context the
RBFNs specifically address a critical situation originated by weak pattern description
and incompleteness among data due to error measurements.

2 Study area

The study area (Fig. 1a) includes the mountain sector of Lombardia Region, for a total
area of about 8000 km?, located in the Italian Central Alps. The elevation (Fig. 1b) range

2441

Jadedq uoissnosiq | Jadeq uoissnosiq |  Jadeq uoissnosig | Jaded uoissnosig

TCD
6, 24372475, 2012

Snow cover
thickness estimation
by using radial basis

function networks

A. Guidali et al.

: “““ “““


http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/2437/2012/tcd-6-2437-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/2437/2012/tcd-6-2437-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

varies between 186 ma.s.l. and 4025 ma.s.l. with an average of 818 ma.s.l. Mean an-
nual air temperature (MAAN) range between —1.05 and 13.56 °C with a mean annual
lapse adiabatic rate of 0.51°C/100 m and consequently the isotherm 0°C located at
2663 ma.s.l. The precipitation regime is extremely variable (ranging between 466 mm
and 2254 mm) controlled mainly by the orographic systems. Precipitation are mainly
in snow form above 2400 ma.s.l. between October and May but the snow accumula-
tion is much more variable than the precipitation regime because wind redistribution,
avalanches and differential melting in function of the different nature of the surfaces.
Snow cover distribution is crucial to the surviving of glaciers and permafrost areas that
characterise the higher mountain landscape and ecosystems of this sector of Central
Italian Alps.

3 Problem description

Several models and approaches were used to estimate the one-dimensional (z-
direction) evolution of snow cover (e.g. Jordan, 1991; Melloh, 1999; Thorsen et al.,
2010). When these models use as input data only precipitation and air temperature
they require the definition of different physical thresholds. The literature shows that
there is no a universally-accepted method for the evaluation of snow height that can be
applied in every condition; often the choice of the most suitable method for the estima-
tion of snow cover thickness (but also of others climatic data) depends on temporal res-
olution, spatial resolution, data quantity and also on the region of interest. Proceeding
from these considerations we propose a model based on the following input variables:

1. Climatic:
a. Daily min temperature
b. Daily mean temperature
c. Daily max temperature
2442

Jadedq uoissnosiq | Jadeq uoissnosiq |  Jadeq uoissnosig | Jaded uoissnosig

TCD
6, 24372475, 2012

Snow cover
thickness estimation
by using radial basis

function networks

A. Guidali et al.

: “““ “““


http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/2437/2012/tcd-6-2437-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/2437/2012/tcd-6-2437-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

d. Daily precipitation

e. Cumulative rain over a given temporal interval T
f. Mean of measures in 1 within interval T

g. Mean of measures in 1 within interval T

h. Mean of measures in 1 within interval T

2. Geographic:

a. Elevation
b. Aspect
c. Slope

We assume that the value for T can be heuristically assessed by a trial and error
procedure during experiments (see Sect. 6). Basing on the above listed climatic and
geographic factors, we approach the snow cover thickness estimation as both function
regression and classification problem. In the first case the output variable snow cover
thickness assumes continuous values; in the second case it is modeled as a discrete
variable whose values are labels of classes. Classes are put in correspondence with
specific sub-intervals of the overall range of variability of the snow cover thickness
values. The meaning of these intervals is related to the final objective of the study.
Proceeding then from the consideration that snow cover thickness is a key factor for
the evaluation of Permafrost distribution we introduce the following classes:

Class A: absence of snow cover
Class B: 1-10cm

Class C: 11-90cm

Class D: greater than 90 cm

In Table 1 inputs and outputs for regression and classification tasks are summarised.
2443
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4 Data set

The data set used was provided by Regione Lombardia’ and consists in the climatic
series recorded between 1987 and 2003 in 136 climatic sensors located in 64 different
locations (Fig. 1c). Unfortunately the series has different temporal length and in many
cases large gaps. Moreover the stations were equipped in different ways, with different
sensors. Consequently the derived data set was built using the spatial intersection of
stations equipped with the needed instruments; this operation has reduced the number
of the stations to 16. In order to have comparable data we decided to use as source
of input data only the observations for a restricted time period (2002—2003). With the
temporal intersection we obtained the final data set composed by a total of 5476 obser-
vations heterogeneously distributed in 14 different locations (Fig. 1d). Table 2 lists the
final data available for each station distinguished by months. Looking into the details we
may observe that May, July and August are the most critical months among data that
globally reaches the amount of an incompleteness of 46 %. Data related to input vari-
ables 1a, 1b, 1c listed in Sect. 3 are instrumental measurements drawn directly from
the climatic database. Values of variables listed as 1e, 1f, 1g, 1h are obtained by apply-
ing cumulative and average procedures. Values of geographic variables are extracted
from the digital elevation model (DEM) which was freely download from the geopor-
tal of Regione Lombardia and has spatial resolution of 20 m. Aspect and slope were
computed using the dedicated tools (spatial analyst tools) of the ArcGIS 10 (ArcEditor).

5 Radial basis function networks

In our study, we model snow cover thickness estimation as a neural learning task
according to which correlation between climatic/geographic factors and snow cover

'In the geoportal related to the Lombardy region are available a lot of geospatial data (vector
and raster) http://www.cartografia.regione.lombardia.it/geoportale.
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thickness is inferred by induction from supervised input-output pairs of data. We adopt
a radial basis function networks in both regression and classification task.

5.1 Radial basis function networks

RBFNs are characterised by a very simple three layer architecture. The input layer
propagates input values to a single hidden layer. In the output layer, each neuron re-
ceives a linear combination of the output of hidden neurons. In case of one output node,
the global non linear function computed by the network can be expressed as a linear
combination of M basis functions associated to each hidden layer neuron. In formula
we have

M
f(x) = Z w;h;(x) (1)

where x = [x1,...,xk]T is the K-dimensional input vector, w; are the weighting coef-
ficients of the linear combination and h;(x) represents the output of the Gaussian
shaped basis function, with scale factor r;, associated with the j-th neuron in the sec-
ond layer. The response of j-th neuron decreases monotonically with the distance be-
tween the input vector x and the centre of each function ¢; = [cy,..., ¢yl

o Ix=elf
hj(x) = exp B )

J

During the training phase, the RBFN learns an approximation for the true input-output
relationship basing on a given training set of examples constituted by N input-output
pairs {x,,y;},i =1,2,...,N. Following (Moody and Darken, 1989), the training scheme
is two-phased:

1. phase one is unsupervised and decides values for cj,j =1,... M,
2445
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2. phase two solves a linear problem to find values for w;,i =1,...,M.
The model configuration requires two user parameters:
1. the number M of first level local processing units and

2. the number p of the p-means heuristic (Moody and Darken, 1989), used to deter-
mine the scale factor I, j=1,...,M of basis functions associated with first level
processing units.

The second phase, having model parameters M, cj,j =1,..,M, r/-,j =1,...,M known,
computes w;,/ = 1,...,M minimising the difference between predicted output and truth

by Least Mean Squares, computed through the pseudo inverse. In formula
w = (H'H) 'Hy = H'y 3)
where

hi(x1) ho(xq) - hp(xy)

hi(x3) hy(xp) - hp(xz)

H= (4)

hy (.XN) hz(IXN) hM(.XN)

and y =[y4,...yn] is the vector of output data, w = [W1,...WM]T are second level
weights. The trained network is tested using a proper set of examples never seen
during training.

5.2 Computation: regression and classification

This work is focused on the problem of learning an input-output mapping from a set
of examples that can be regarded as an approximation of a multidimensional function.
We investigate the behaviour of RBFN when coping with multidimensional function
estimation modelled in the two different settings: regression and classification.
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In the regression configuration the RBFN learns from input-output pairs constituted
as usual, by input patterns represented by vector of measurements and output values
representing numerical function values. The network is configured with a single output
neuron.

We now formally define the components that take part in the regression task. The
set Q is composed by all available data coupled with the relative truth value:

Q={(Xi1yi)1i=11""N} (5)

where x; is a vector containing the input variables discussed in Sect. 3, y; is the truth
value related to x; and N is the number of available data. The set Q is then split into
two partitions, namely the training set TrSq and the test set TeSg,.

To model the multidimensional function estimation as classification we identify in-
tervals of the function co-domain and we put them in correspondence with predefined
classes. The underlying assumption is that precision required in regression task is arbi-
trary due to incompleteness and or inconsistencies among data. During training, input
pattern vectors are put in correspondence with a predefined class labels, exemplifying
a hard mapping at a lower granularity with respect to regression, with mutually exclusive
classes. The network is configured with an output layer having a number of neurons
equal to the number of classes. The formal definition can be easily reconducted to the
regression task given in Eq. (5) considering the truth value y; as a label that describe
the belongingness to each of the defined classes.

6 Experiments

In our experiments different evaluation indexes have been adopted. The agreement

between truth and classification results has been analysed by means of the confu-

sion matrix and derived accuracy indexes (Congalton, 1991), overall accuracy (OA),

producer accuracy (PA) and user accuracy (UA), capturing the percent agreement

between truth and classification results, is complemented with the Cohen’s kappa
2447
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coefficient thought to be a more robust measure that takes into account the agree-
ment occurring by chance (Cohen, 1960). The root mean square error (RMSE) index
and its normalised version NRMSE are used in combination with the mean absolute
error (MAE) to measure the magnitude of network mistakes. For completeness is given
the formal definition of these indices:

1 .
RMSE =/~ 3> (7, - /)2 (6)

NRMSE = "MSE 400 (7)
MAX(y;)

1 .
MAE = h z 1v; = il (8)

where y; is the estimated value.

The overall data set composed of 5476 patterns was randomly split in the proportion
of £, 1 for training (TrSg) and test (TeSg), respectively.

The radial basis function network configured for the tasks described above has been
applied to solve the problem of estimating the snow cover thickness. In the experi-
ments, attention has been given to the parameters calibration process. A sensitivity
analysis has been conducted varying the input parameters described in Sect. 5.1. For
the training phase focused on the centroids identification, the K-means clustering algo-
rithm was compared with a faster approach based on the random choice of M points
in the input space. These two methods showed comparable. performances. However,
as K-means algorithm imposes a small number of centroids to limit the computational
complexity, the random choice strategy has been preferred.

6.1 Regression results

First of all, we present the results obtained using the RBFN performing regression

task. The RBFN receives in input the vector of measurements derived from the set of

features (input variables) described in Sect. 3. Concerning the network architecture,
2448
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the input layer has 11 neurons equal to the number of features and the output layer
has 1 neuron representing the predicted snow height value. Several configurations of
the RBFN were considered varying the temporal window T used in the computation
of the features 1e, 1f, 1g and 1h, which assumed values ranging from 10°C to 45°C.
For each window size, different RBFN configurations were considered distinguished
by the different number M of basis functions which assumed values 100, 250, 500,
600, 750. The RBFN network showed best behavior setting temporal window dimen-
sion at 45. Table 3 shows the results obtained in this configuration, varying the neural
internal parameter M. Results are expressed in terms of RMSE, NRMSE and MAE
indexes and are obtained training and testing the network with five different pairs TrSq
and TeSg, randomly generated from the overall dataset Q and averaging the individual
indexes obtained. After the value M = 500 the error indexes show a lower decrease.
We choose than this value as a reference for an optimize balancing between compu-
tationl cost, training accuracy and generalisation power. In order to conduct a deeper
analysis on how the snow cover thickness has been medelled, in Fig. 3 we plot the
estimated values versus truth values which are sorted in ascending order. Figure 5a, b
shows the mean weekly error of the modelled snow cover with respect to the weekly
mean of the liquid precipitation (rain) of two automatic weather stations (AWS) repre-
sentative of the lower altitude (ST1) and the higher altitude (ST2) for 2002 and 2003,
respectively. There is not a significant relationship between the measured liquid precip-
itation and the errors although there is a general increase of the errors in late fall and
spring when there are the bigger differences at different altitude because precipitation
becomes solid (snow) at higher elevation and therefore it is not recorded only from the
AWS. Nevertheless some peaks of errors (like the first week of 2002 and 2003 and the
week 21 of 2003) are clearly not related to the data input. The RMSE values obtained
indicate an acceptable mean disagreement between reference and predicted values.
However we have to consider that different intervals within the snow height range have
different relevance in the environmental analysis and errors computed on these inter-
vals become unacceptable making arbitrary numerical predicted values. We proceeded
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in modelling the snow cover thickness estimation task as a classification problem in an
attempt to reduce the precision of the output values for the benefit of the significance.

6.2 Classification results

The four classes were chosen considering their importance for permafrost (perennially
frozen ground) stability. Indeed, where the snow is absent (class A) during the winter
ground suffers the extremely low air temperature, while class B (1-10cm) has been
distinguished by the class C (11-90cm) because in the former, in addition to the more
limited insulation of the thinner snow with respect to the air temperature, also a certain
percentage of radiation can reach the ground surface, while above 90 cm (class D) the
insulation of the snow can be considered almost total.

For this task the network architecture is structured as followed: the input layer has 11
neurons equal to the number of features and the output layer has 4 neurons equal to the
number of classes. Several configurations of the RBFN were considered varying pa-
rameters T and M as described for regression task. Also in this case the RBFN showed
best behaviour setting temporal window dimension T at 45 and the number of centroids
M equal to 500. Results obtained with this configuration are showed in Table 4. The
RBFN performs classification with a good level of accuracy, showing an OA equal to
85.6 % and a K coefficient equal to 79.5%. Examining the details, the crucial class
A, representing the absence of snow cover, has the highest performance expressed
in term of both PA and UA, with values 95.05 % and 92.47 %, respectively. This result
can be reconducted to the fact that features values are very representative for discrim-
inating between “there is snow” or “no snow”. The worst case is assigned to class B
with PA equal to 75.40 % and UA equal to 78.87 %. This result can be correlated with
the narrow range of snow cover thickness assigned to this class. Class D is the least
represented, but since it is defined with a large interval, the experiments reveal good
performances. Tables 5-10 slices global results showed in Table 4 for different level
of elevation. Inevitably results of certain classes show low statistic as consequence of
the studied phenomenon. The second class is confirmed critical with the exception of
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the results in Table 6 related to elevation between 1000 and 1300 m. Misclassification
errors are mostly committed between class B and class C at all different considered
elevation, as already seen in Table 4.

6.3 Snow cover mapping

In order to exploit the potentialities of RBFN in estimating snow cover distribution, we
pose as further interest in our research, the production of snow cover maps allowing to
obtain a synoptic view of the phenomenon under investigation. This task has been ad-
dressed by proceeding in the spatialisation of input climatic variables and then by using
the RBF network to compute for each input pattern including climate and geographic in-
put variables, the corresponding predicted snow cover values. The elevation has been
derived from the Digital Elevation Model as variable related to the air temperature. With
reference to a generic cell xy, steps were taken to homogenize in terms of elevation
the known values. Homogeneization was obtained by performing linear regression be-
tween elevation and temperature values. Setting a reference evaluation value, each
known temperature value was shifted in function of the angular coefficient of the linear
dependence law. Subsequently spatialisation was performed by applying the inverse
square distance method obtaining temperature values for each grid unit. These values
have been finally modified reporting them at the original elevation. The spatialisation
of precipitation patterns is a critical aspect requiring domain dependent complex anal-
ysis. In our study we decided to adopt a simple and easily controlled method based
on Voronoi tessellation, implicitly assuming that the known values are representative of
a given area around the point of measurement (Kay and Kutiel, 1994). We refrain then
from conducting a more sophisticated analysis that could be arbitrary in our context.
Nine weeks were chosen based on their relevance for the cryospheric development
and for their variability. For these reasons a higher frequency of examined weeks was
setted for the end of the spring (during the melting period). For each of the nine weeks
a snow map have been generated having as attribute for each grid element the neural
computed snow cover thickness.
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An indirect validation procedure has been accomplished comparing our results with
those obtained by a snow mapping algorithm based on the normalized difference snow
index (NDSI) derived from Landsat imagery. The NDSI-based snow algorithm together
with its physical assumptions and derived decision rules for producing binary snow
cover maps is described in (Dozier, 1989). To proceed in the comparison, neural com-
puted snow cover thickness values have been binarized setting euristically the thresh-
old to value of 5cm. This value is a threshold commonly used to define the days with
snow on the ground (snow duration) (Hantel and Hirtl-Wielke, 2007). Comparison re-
sults have been organized in a confusion matrix in which classes considered are pres-
ence and absence of snow. Results obtained from NDSI-based snow algorithm play
the role of reference data. Table 11 reports comparison results in terms of OA (Overall
Accuracy), UA (User Accuracy) and PA (Producer Accuracy) indexes.

The RBFN maps show in general an overestimation of the presence of snow with
respect to the NDSI maps because they reflect the network of AWS used for the train-
ing and the microclimatic conditions around them. This means that during the melting
season and the beginning autumn when the snow distribution suffered more inten-
sively of the site conditions and it is extremely dishomogeneous, is more probable that
snow remains on the flat point where AWS are located rather than in the other sur-
rounding areas (generally except for northern exposed slopes). Table 12 shows OA
values distinguished by different elevation ranges. Results obtained are good in gen-
eral at low elevation (<1600 m); at higher elevation, above 1900 ms.l.m., the accuracy
decreases lower than 70 % during the melting season and at the beginning of autumn,
with a general underestimation. A different result has been achieved between 1600 and
1900 where poor results have been obtained only during the winter core for a problem
of overestimation. The overall results obtained from the mapping procedure tallied in
general with regression and classification results (see Figs. 3 and 4). Figure 6 shows
the map produced by the RBF network when processing data of the week 11 March
2003. The overlap of this map, hardened with 5cm. Threshold, with the corresponding
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NDSI map is shown in Fig. 7. The experts examined the maps in the light of topographic
features of the study areas, and judged the results satisfactory.

7 Conclusions

An detailed investigation on the use of RBFN for snow cover thickness estimation has
been conducted. The RBFN model copes very well with several levels of complexity.
One originates from the incompleteness among data principally due to different tempo-
ral lengths and large gaps in time series. Additional source of complexity is constituted
by weak description of input patterns that include only a minimal set of topographic
and climatic variables. The RBFN model shows high flexibility to move from regression
and hard classification tasks which are usually complementary to understand complex
environmental phenomena at different level of precision. As seen in our experimental
context, we may consider the snow cover thickness estimation by RBFN a valuable
tool that working on a minimal set of input variables could be used in a wide range of
situations. Moreover the dynamic character of the implemented model allows to easily
simulate different scenario setting the input variables to specific values of interest and
obtaining the estimated snow cover thickness.
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Table 1. Input and output variables used in regression and classification task.

Features Model Output setting
1: Daily min temperature
1: Daily mean temperature
1: Daily max temperature Real value
1: Daily precipitation Regression [0-400 cm]
1: Cumulated rainon T
1: Mean of measuresin1onT
1: Mean of measuresin1on T A: absence of snow cover
1: Mean of measuresin1on T B: 1cm-10cm
2: Elevation Classification C: 11cm-90cm
2: Aspect D: greater than 90cm
2: Slope
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Table 2. Amount of data in the final dataset. The subdivision into months and altitude has been .,  BY using radial basis
applied in order to emphasise the diversity and incompleteness of the data structure. @ function networks
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(7] q -
Months . A. Guidali et al.
Station ma.sl. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tot %
Branzi 830 23 25 28 0 O 5 0 O 60 O O 9 201 Y
Grosio 1220 54 53 31 0 0O 5 0 0 60 0 60 42 355 L
Val Torreggio 1350 17 28 3 30 O 60 0O O 60 3 30 50 341 =
Val Dorena 1575 46 22 7 0 O O O O 0O 4 29 31 139
Laghi di Chiesa 1596 59 56 62 60 2 59 0 0 60 62 59 61 540 -
Alpe Costa 1672 62 56 62 60 21 5 0 0 60 62 60 62 564
Piazzo Cavalli 17199 62 56 62 60 18 5 0 0 60 62 60 62 561 O
Monte Masuccio 1770 17 28 31 30 0 3 0O 0 30 29 30 31 256 I3
Carona 1955 31 27 3 30 1 3 0 O 30 40 60 52 331 S
Funivia Bernina 2014 62 56 62 59 32 0 62 62 7 62 60 62 586 @,
Saviore del’Adamello 2017 0 0 0 O 0 0 3 3 1 28 30 0 121 9
Cam Boer 2114 62 56 62 52 24 0 46 38 20 55 55 62 532 =
Monte Trela 2150 55 56 62 60 O 0 59 50 0 62 60 57 521 )
Isola Persa 2700 31 28 31 30 31 30 31 31 30 33 60 62 428 b
@
Tot 581 547 565 471 129 438 229 212 478 530 653 643 5476 -
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Table 3. Regression results varying the number of centroids M, expressed in term of RMSE,

NRMSE and MAE.

# Centroids RMSE NRMSE MAE

100 2622 6.60% 15.18

250 2231 561% 12.03

500 18.20 4.58% 9.58

600 17.63 4.44% 9.28

750 16.99 4.27% 8.74
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Table 4. Confusion matrix for the radial basis function network classifier evaluated on the overall  © £ ti t k
test set TeSg; class A: absence of snow cover, class B: 1-10cm, class C: 11-90cm, class D: § S OO POl
greater than 90 cm. 7 A. Guidali et al
2. . .
Reference data %
QO
Class data A B C D Tot U UA ?E _
A 442 31 5 0 478  92.47 % .
B 21 377 76 4 478 78.87% ! !
C 2 92 603 15 712  84.69% O
: o o 17 1w 1% sazav : N .
Tot P 465 500 701 160 - - 7]
PA 95.05% 75.40% 86.02% 88.12% - - © ! !
Total accuracy: 85.5969 % (1563 hit, 263 miss, 1826 total) éU ! !
Total error: 14.4031 % @
KAPPA value: 79.5523 %
- N RN
:
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(7]
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2
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U
QO
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Table 5. Confusion matrix for the radial basis function network classifier evaluated on the test
set TeSy with elevation below 1000 m; class A: absence of snow cover, class B: 1-10cm,
class C: 11-90cm, class D: greater than 90 cm.

Reference data

Class data A B C D TotU UA

A 38 4 0 0 42 90.48 %
B 0 10 3 0 13 76.92 %
C 0 0 0 0 0 /!

D 0 0 0 0 0 I
Tot P 38 14 3 0 - -

PA 100.00% 71.43% 0% // - -

Total accuracy: 87.2727 % (48 hit, 7 miss, 55 total)

Total error: 12.7273 %
KAPPA value: 69.1259 %
KAPPA std.err: 0.0077
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Table 6. Confusion matrix for the radial basis function network classifier evaluated on the test
set TeSg, with elevation between 1000 and 1300 m; class A: absence of snow cover, class B:

1-10cm, class C: 11-90cm, class D: greater than 90 cm.

Reference data

Class data A B C D TotU UA

A 39 0 0 0 39 100.00 %
B 2 67 3 0 72 93.06 %
C 0 2 4 0 6 66.67 %
D 0 0 0 0 0 1/

Tot P 41 69 7 0 - -

PA 95.12% 97.10% 57.14% // - -

Total accuracy: 94.0171 % (110 hit, 7 miss, 117 total)
Total error: 5.9829 %

KAPPA value: 88.4322 %

KAPPA std.err: 0.0017
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Table 7. Confusion matrix for the radial basis function network classifier evaluated on the test © £ \ k
set TeSg, with elevation between 1300 and 1600 m; class A: absence of snow cover, class B: & unction networks
1-10cm, class C: 11-90cm, class D: greater than 90 cm. 7 A. Guidali et al
2. . .
Reference data %
QO
Class data A B C D TotU UA ?'2 _
A 96 7 0 0 103 93.20% .
8 s e 23 0 122 7869% EEEN
C 0 17 115 0 132 87.12% O
D 0 o o 0 o .y - B EEE
Tot P 99 120 138 0 - - 7]
Total accuracy: 85.9944 % (307 hit, 50 miss, 357 total) éu ! !
Total error: 14.0056 % @
KAPPA value: 78.8497 %
- 1 N
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Table 8. Confusion matrix for the radial basis function network classifier evaluated on the test © £ \ k
set TeSg, with elevation between 1600 and 1900 m; class A: absence of snow cover, class B: & unction networks
1-10cm, class C: 11-90cm, class D: greater than 90 cm. 7 A. Guidali et al
2. . .
Reference data %
QO
Class data A B C D TotU UA ?'2 _
A 114 8 1 0 123 92.68% .
B 14 95 13 0 122 77.87% ! !
C 0 27 183 0 210 87.14% O
D 0 0 o o o g - B EEE
Tot P 128 130 197 0 - - 73
Total accuracy: 86.1538 % (392 hit, 63 miss, 455 total) éU ! !
Total error: 13.8462 % @
KAPPA value: 78.6163 %
- 1 N
:
(=
(7]
(7]
2
|
U
QO
©
:
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Table 9. Confusion matrix for the radial basis function network classifier evaluated on the test © £ \ k
set TeSg, with elevation between 1900 and 2200 m; class A: absence of snow cover, class B: & unction networks
1-10cm, class C: 11-90cm, class D: greater than 90 cm. 7 A. Guidali et al
2. . .
Reference data -:u
QO
Class data A B C D Tot U UA ?'2 _
A 155 12 4 0 171 90.64 % .
B 2 109 34 4 149 73.15% ! !
Cc 2 46 250 9 307 81.43% O
5 : o s s sosen - B EEE
Tot P 159 167 301 66 - - 73
PA 97.48% 65.27% 83.06% 80.30% - - © ! !
Total accuracy: 81.8182 % (567 hit, 126 miss, 693 total) éU ! !
Total error: 18.1818 % @
KAPPA value: 73.6529 %
- 1 N
:
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2
|
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Table 10. Confusion matrix for the radial basis function network classifier evaluated on the
test set TeS, with elevation above 2200 m; class A: absence of snow cover, class B: 1-10cm,

class C: 11-90cm, class D: greater than 90 cm.

Reference data

Classdata A B C D Tot U UA

A 0 O 0 0 0 1/

B 0O 0 0 0 0 1/

C 0 O 51 6 57 89.47 %
D 0 O 4 88 92 95.65%
Tot P 0 O 55 94 - -

PA /I Il 92.73% 93.62% - -

Total accuracy: 93.2886 % (139 hit, 10 miss, 149 total)
Total error: 6.7114 %

KAPPA value: 85.6978 %

KAPPA std.err: 0.0019
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Table 11. Summary of the RBFN results.

Data OA Presence of snow Absence of snow
PA UA PA UA
30 Apr2002 76.03% 88.20% 64.94% 68.25% 89.66%
28 May 2002 64.03% 78.36% 39.49% 59.41% 89.04%
22 Oct 2002 62.94% 69.81% 20.72% 62.11% 93.55%
3Dec2002 62.15% 62.73% 71.60% 61.68% 51.80%
11 Feb 2003 83.31% 87.20% 84.18% 78.79% 82.61%
25 Feb 2003 81.96% 88.35% 79.20% 75.72% 86.13%
11 Mar 2003 85.29% 84.72% 89.91% 86.64% 80.15%
1 Apr2003 82.10% 86.67% 78.99% 78.19% 86.11%
29 Apr2003 79.99% 88.70% 70.61% 74.28% 90.42%
Mean 75.31% 81.64% 66.63% 71.68% 83.27%
Std 9.55% 9.43% 22.49% 9.31% 12.49%
Max 85.29% 88.70% 89.91% 86.64% 93.55%
Min 62.15% 62.73% 20.72% 59.41% 51.80%
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Table 12. Overall accuracy for 6 elevation range.

Data Overall accuracy
0-1000 1000-1300 1300-1600 1600-1900 1900-2200 >2200
30 Apr2002 99.95% 94.69 % 99.82 % 82.73% 56.13 % 68.14 %
28 May 2002 99.98 % 98.98 % 99.99 % 91.41% 47.42 % 42.61%
22 Oct 2002 99.30% 96.25 % 99.14 % 91.94 % 58.70 % 37.15%
3 Dec 2002 70.60% 51.78% 50.82 % 55.14 % 74.42 % 61.33%
11 Feb 2003 99.67 % 91.98 % 93.60 % 67.60 % 60.77 % 87.44 %
25 Feb 2003 99.98 % 96.32 % 98.79 % 72.89 % 46.92 % 86.17 %
11 Mar 2003 99.93% 97.40% 94.43 % 73.35% 69.26 % 86.51%
1 Apr2003 99.78% 99.80 % 99.48 % 84.02 % 65.42 % 77.13%
29 Apr2003 99.97 % 98.31% 99.92 % 91.96 % 61.96 % 71.93%
Mean 96.57 % 91.72% 92.89 % 79.01% 60.11% 68.71%
Std 9.74 % 15.16 % 15.96 % 12.73% 9.18% 18.66 %
Max 99.98 % 99.80 % 99.99 % 91.96 % 74.42 % 87.44%
Min 70.60 % 51.78% 50.82 % 55.14% 46.92 % 37.15%
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@

Fig. 1. In (a) the study area has been enclosed in a black rectangle. In (b) the Digital Elevation
Model is depicted, related to the study area indicated in (a). The locations of all stations of the
initial data set equipped with different type of sensors are marked in (c¢). The locations of the 14
stations equipped with air temperature sensor, snow thickness sensor and precipitation gauge,
used for the final data set are represented in (d).
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Fig. 2. Radial basis function network architecture for function approximation.
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Fig. 3. Estimated snow cover thickness versus measured values in ascending order.
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Fig. 4. Mean Absolute Error and standard deviation in regression task as a function of elevation

ranges.
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Fig. 5. Mean Absolute Error (MAE) n regression task as a function of weeks during the years
2002 (a), and 2003 (b) compared with the mean weekly liquid precipitation measured close at
the altitudinal limits of the data set: ST1 485ma.s.l. and ST2 2150 ma.s.l.
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Fig. 6. Display on a logarithmic scale of the snow map produced by RBFN.
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Fig. 7. Overlapping of maps produced by RBFN Network and NDSI. Considering as first result
that produced by RBFN and as second that produced by NDSI, colors have the following mean-
ing: blue = PS — PS; green = AS — AS; yellow = PS — AS; red = AS — PS, with PS = presence of

snow and AS = absence of snow.
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